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Abstract

In order to establish a thermodynamic justification of the theoretical relationship be-
tween the hydraulic, pressure/matric, and gravitational head in subsurface hydrology,
the thermodynamic literature pertaining to subsurface flow processes is reviewed. The
incompressibility of liquids negates a thermodynamic definition of pressure, which5

gives rise to several inconsistencies in pore scale theories. At larger scales, the grav-
itational potential and fluid pressure are treated as additive potentials. This superpo-
sition principle is replicated in the well-established relationship between the various
heads according to subsurface hydrological theory. The necessary requirement that
the superposition be maintained across scales is combined with conservation of en-10

ergy during volume integration to establish consistent upscaling equations for the vari-
ous heads. The power of these upscaling equations is demonstrated by the derivation
of an upscaled water content-matric head relationship and the resolution of an appar-
ent paradox reported in the literature that is shown to have arisen from a violation of
the superposition principle.15

1 Introduction

In saturated and unsaturated water flow in porous media, the continuum approach is
generally invoked (e.g., Bear and Bachmat, 1991, p. 14–31), and the resulting laws
of mass conservation and movement, as well as the variables appearing in there, are
defined for a mathematical point centered within a Representative Elementary Volume20

(REV). The resulting equation for water movement is Darcy’s Law. Its general accep-
tance is illustrated by the fact that the REV-scale has frequently been referred to as the
Darcy scale (e.g., Bhattacharya and Gupta, 1983; Jacquin and Adler, 1987; Kavvas,
2001, among many others).

In order to develop theories (and their associated measurable variables) at scales25

that better correspond to the scale at which typical real-world problems manifest them-
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selves, there is a drive to upscale these Darcy-scale relationships and variables to
larger spatial scales. In doing so, pertinent questions arise as to the physical sound-
ness of upscaling variables such as fluid pressure, matric and hydraulic potential, and
water flux. It must be stressed that this problem differs from upscaling from the pore
scale to the Darcy scale. Nonetheless, the rigour with which the fundamental ques-5

tions surrounding the nature of the upscaling operation and the physical relevance of
the resulting upscaled properties and variables have been addressed for scale trans-
fers starting at the pore scale may provide valuable insights for the next-larger scale
transfer addressed here.

At the pore scale, the solid phase, the soil solution, any other fluids present, and10

the soil gas share interfaces where two phases meet, contact lines where interfaces
meet, and contact points were contact lines meet. The various surface tensions and
pressures together with gravity govern the distribution of the various fluids and soil
gas over the pore space. A sizeable body of literature exists on the thermodynamic
description of such systems at the pore scale, of which Gray and Miller (2007) provided15

an insightful overview.
Gray (2002) presented a systematic method to upscale the pore-scale thermody-

namic expressions for internal, kinetic, and potential energy of the various phases and
their interfaces and contact lines to larger scales (Darcy scale and beyond) by integrat-
ing over a soil volume. The most recent culmination of this on-going work appeared in20

Gray and Miller (2005, 2006) and Miller and Gray (2005), where a systematic thermo-
dynamically constrained averaging theory was laid out. The resulting equations bear
some similarity with the early work of Groenevelt and Bolt (1969) on the non-equilibrium
thermodynamics of subsurface water flow, although the former preferred to work in a
Langrangian framework while the latter favored an Eulerian approach.25

Nordbotten et al. (2007) recently proposed a volume-average of the Navier-Stokes
equations for saturated flow over a REV, without the term accounting for the kinetic en-
ergy. While integration over a soil volume appears acceptable for thermodynamic quan-
tities, a volume-averaged flux has no physical meaning, and Nordbotten et al. (2007)
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acknowledged the associated problems for practical upscaling. Furthermore, their ap-
proach allows only a linear variation of porosity in space, which limits the size of the
averaging volume. At the next scale transfer, from the Darcy scale to that of a soil or
an aquifer section (termed macroscale by Gray et al., 1993, p. 2), these limitations are
severe.5

Gray and Miller (2005) argued against the inconsistencies in and the hysteretic na-
ture of many Darcy- and macroscale models and propose instead a rigorous develop-
ment from pore scale physics (with the assumptions required to achieve the desired
upscaling identified explicitly instead of being tacitly incorporated in the model). The
general upscaling methodology of Miller and Gray (2005) and Gray and Miller (2006)10

does not have the limitations of Nordbotten et al. (2007). But its complexity is such
that conventional modeling practices will likely persevere for some time, particularly for
the unsaturated zone. Fortunately, a full thermodynamic treatment may not always be
necessary; at the Darcy- and the macroscale, the various forces and pressures acting
in the pores are efficiently unified in the core-scale matric and gravitational potential15

while the kinetic energy can generally be ignored. The configuration of the fluids in
the pore space as described by their respective indicator functions coalesce into the
core-scale volumetric fractions of the bulk medium occupied by the various phases
(readily calculated from the volume integrals of their indicator functions; Nordbotten et
al., 2007), at the cost of these fractions becoming hysteretic. The practical applicability20

of existing models, their conceptual and thermodynamic shortcomings notwithstand-
ing, is supported by the single-fluid case elaborated by Gray and Miller (2006), which
yielded a result very similar to the classical groundwater flow equation.

Whatever the method of upscaling may be, gravity gains importance as the vertical
dimension of the system under study expands. In natural systems, gravity manifests25

itself in such phenomena as the finite height of capillary rise in the unsaturated zone,
and in fluid pressure in the saturated zone. The connection between this ‘gravitational’
pressure and the thermodynamic definition of pressure as the negative of the partial
derivative of internal energy with respect to volume has been treated in various ways
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in the literature and will be elaborated on in Sect. 2.1.
The role of gravity and pressure is apparent in the work of Gray and Miller (2004),

who studied the upscaling of Darcy’s Law in an idealized system involving a configura-
tion with horizontal flow in a volume containing two porous media with different porosi-
ties. Gray and Miller (2004) averaged over a cross-section perpendicular to the main5

direction of flow, thereby bypassing the difficulties associated with averaging fluxes
over volumes (Nordbotten et al., 2007). They reported inconsistencies in Darcy’s Law
if the layering of the media was tilted. Their analysis also discussed the averaging of
fluid pressure. In the unsaturated zone, the matric potential is the equivalent to fluid
pressure in the saturated zone. Therefore, the work of Gray and Miller (2004) may10

also have ramifications for averaging the matric potential of a soil volume, and thus for
the determination of soil water retention curves at various scales. The effect of gravity
on the nature of the soil water retention curve was experimentally addressed in an-
other context by Liu and Dane (1995), and their findings will be made to bear on the
upscaling formalism.15

This paper first discusses the treatment of pressure in various thermodynamic mod-
els for the distribution and movement of fluids in porous media, and tries to recon-
cile that with established soil physical and groundwater hydrological theory. It then
connects some of the results of the thermodynamic analysis to more traditional soil
physics by developing consistent volume averaging equations for various soil physical20

variables. Problems associated with upscaling Darcy’s Law itself will be clarified. The
paper then examines the inconsistencies reported by Gray and Miller (2004) between
formulations of Darcy’s Law and its upscaled equivalent, which was illustrated for a
special case.
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2 Theory

2.1 Thermodynamic treatment of pressure and its conversion to the Darcy-scale pres-
sure head

In the thermodynamic analysis of Gray (2002), the total energy of a phase that occupies
a portion of the pore space is the sum of internal, kinetic, and potential energy. In5

classical thermodynamics, the differential of the internal energy of a single-component
system is (Callen, 1985, p. 35):

dU =
∂U
∂S

∣∣∣∣
V,M

dS +
∂U
∂V

∣∣∣∣
S,M

dV +
∂U
∂M

∣∣∣∣
S,V

dM (1)

with U the internal energy [ML2T−2], S the entropy [ML2T−2K−1], V the volume [L3], and
M the mass, usually expressed in mole numbers. The partial derivatives provide ther-10

modynamic definitions of the temperature T [K], pressure p [ML−1T−2], and chemical
potential µ [ML2T−2]:

T ≡ ∂U
∂S

∣∣
V,M

p ≡ −∂U
∂V

∣∣
S,M

µ ≡ ∂U
∂M

∣∣
S,V

(2)

The definition of pressure is intimately connected to the definition of work W [ML2T−2]
done by the system by expanding its volume against an external pressure p:15

dW = −pdV (3)

with the minus-sign arising from the convention that work is positive if it is performed
by the system, thereby reducing its internal energy (Callen, 1985, p. 19–35).

Gray’s (2002) definition of the internal energy of a unit volume of fluid or gas at the
pore scale is (excluding the energy of its interfaces with other phases):20

u = T s − p + µMρ (4)
1142
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with u the internal energy per volume [ML−1T−2], s the entropy per volume
[ML−1T−2K−1], ρ the density [ML−3] of the phase (assumed by Gray to be a single
component of perfect purity, but an extension to solutions and mixtures is straightfor-
ward), and µM the chemical potential of the phase per mass [L2T−2]. This is the Euler
relation (Callen, 1985, p. 59–60), normalized by V . While the change in the units of5

mass and the resulting dimensions of the chemical potential compared to Eq. (1) is
trivial, the normalization by volume is key. This implies incompressibility of the fluid,
just as the more common normalization by mass implies constant mass (vz. Eqs. 2.23
and 2.24 of Callen, 1985, p. 39). The incompressibility assumption is quite accurate for
the pore solution but renders the thermodynamic definition of pressure meaningless: a10

volume that cannot expand or contract cannot perform work according to Eq. (2), leav-
ing p undefined. Since, for such a fluid, dV ≡0, the pressure term drops out of Eq. (1),
and a definition of p is not required. Gray (2002) consequently left out the term involv-
ing pressure in his Eq. (13a) (essentially equivalent to Eq. 1 above). This is consistent
with the equation that Groenevelt and Bolt (1969) obtained by applying the normaliza-15

tion by volume directly to Eq. (1). Obviously, the presence of molecules at non-zero
absolute temperature ensures the existence of a pressure in the fluid volume compris-
ing the system under study, but its value cannot be established from the principles of
classical thermodynamics. This leaves the pressures in Gray’s (2002) thermodynamic
derivations somewhat ambiguous, particularly since a flow velocity field is imposed.20

The only condition under which the pressure is not affected by flow is unit gradient or
gravity flow, when the positive downward flux density is equal to the hydraulic conduc-
tivity (e.g., Wagenet, 1984; Jury et al., 1985, p. 100) and loss in gravitational potential
exactly matches the energy dissipation by viscous flow.

In contrast with Gray’s (2002) assumption of fluid incompressibility, Gray and Miller25

(2007) presented the classical thermodynamic definition of pressure as in Eq. (2)
above. Since they normalized the Euler relation by mass instead of volume, they did
not implicitly assume incompressibility. However, they explicitly addressed the thermo-
dynamics of interfaces between a wetting and a non-wetting phase, implying that the
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two did not mix well, which could only be the case if at least one of the two was a
liquid. The probable incompressibility of at least one phase complicates the interpre-
tation of the derivations with respect to the density that occur in the equations for fluid
pressures, interfacial tensions, and the differentials of internal energy.

Both Gray (2002) and Gray and Miller (2007) strived to upscale pore scale variables5

and relationships by rigorous volume averaging. Consequently, they could not describe
the effect of the macroscale pressure field on the flow since these pressures do not
emanate from local conditions in the pores. Instead, they are imposed by large-scale
factors like climate, land use, aquifer structure, location within the flow domain, etc.,
and therefore cannot and should not be inferred from pore-scale information alone.10

While Gray and Miller (2007) focused on equilibrium conditions and did not consider
flow, Gray (2002) accommodated the large-scale forcing by imposing a macroscopic
velocity field, which he explicitly incorporated in the equations.

Groenevelt and Bolt (1969) and Gray and Miller (2006) aimed to develop macroscale
equations and therefore were forced to include the macroscale pressure field and cal-15

culate, rather then impose, the resulting macroscale flow velocity field. Both did so by
treating the pressure as a potential and adding it to the gravitational potential. Groen-
evelt and Bolt (1996) simply declared the pressure a potential that was additive to the
gravitational potential. Gray and Miller (2006) allowed the volume fraction of a phase to
change, which in turn allowed its differential to be non-zero. They equated the macro-20

scopically observable pressure to the thermodynamic pressure according to Eq. (2). By
doing so they could replace µM by the pressure potential by applying the Gibbs-Duhem
relation (Callen, 1985, p. 60-62) for isothermal conditions. Thus, from Eq. (100) in Gray
and Miller (2006):

ψ = p + ρg
(
x3 − x3,ref

)
(5)25

where ψ is the total potential per volume [ML−1T−2], g is the gravitational acceleration
[LT−2], x3 is the vertical coordinate [L], and x3,ref [L] is an arbitrary reference height.
Note that the inclusion of x3,ref makes the potential relative. Since the gradient of ψ is
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all that is needed, this is inconsequential.
The superposition of the potentials created by the pressure field and by the grav-

itational field suggests that methods developed to average one potential should be
applicable to the other as well. Furthermore, the superposition principle implies that, in
any upscaling operation through systematic averaging, the averaging manipulations be5

identical for both potentials to maintain the superposition property across scales. Note
that, as long as x3,ref is kept constant, it does not impair the superposition property.

In subsurface hydrology, the hydraulic and matric head are related as (e.g., Brutsaert,
2005, p. 268; Jury et al., 1985, p. 77):

H = h +
(
x3 − x3,ref

)
(6a)10

It is immediately clear that this textbook equation can be obtained by dividing the ther-
modynamically established Eq. (5) by ρg and replacing p by p minus the atmospheric
pressure to allow h to be zero at the phreatic level. In this way the pressure is made
relative in the same fashion as the elevation in Eq. (5). Without loss of generality we
can set the arbitrary reference height x3,ref [L] to zero:15

H = h + x3 (6b)

For h≥0 in a multiphase system with air at instantaneous equilibrium with the atmo-
sphere and a fluid, the pressure in the fluid exceeds the atmospheric pressure, and h
is routinely termed the pressure head. For wetting fluids this implies that the medium
is saturated with this fluid. For matric potentials <0, the fluid pressure is smaller than20

atmospheric pressure, and h represents the matric and interfacial forces that retain the
fluid in the pores. It is therefore termed matric head. Note that the magnitude of the
matric forces can cause values of h that are so low that the pressure equivalent would
be negative. Since negative pressures are physically unacceptable, Hassanizadeh and
Gray (1990) proposed a wettability potential in addition to the fluid pressure to repre-25

sent the effect of matric and interfacial forces on a phase. This wettability potential
quantifies the energy change of the phase associated with a change in saturation. The
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sum of the fluid pressure potential (absolute or relative to the atmospheric pressure
potential) and the wettability potential gives h. The wettability potential satisfies the
superposition property of the pressure and the gravitational potential.

The excessive pressure of the air for h<0 allows it to invade the pores. The extent to
which it will do so is described by the fluid retention curve, which indicates how much5

fluid resides in the pore space at a given matric head. Thus, this generally hysteretic
curve, which is specific for a combination of medium and fluid, facilitates a consistent
characterisation of the system in terms of fluid content and energy status of the fluid
(Jury et al., 1985, p. 45–68; Hillel, 1998, p. 129–168).

2.2 Upscaling by spatial averaging10

The discussion here pertains to upscaling within a soil volume that is large enough to
be heterogeneous in a non-stationary sense (Cressie, 1993, p. 52–53), i.e., trends in
soil hydraulic properties may be present. At the scale of the analysis the continuum
approach is assumed to be valid. The pore architecture is such that the flow is laminar
anywhere, e.g., at the REV-scale, the validity of Darcy’s Law is not disputed:15

q = −K (θ)∇H (7)

where q [LT−1] is the volumetric flux density vector and K (θ) [LT−1] is the hydraulic
conductivity tensor.

The focus is on water flow in porous media; x1 and x2 denote horizontal coordinates
[L], and t time [T]. The variables of interest are the porosity n(x1,x2,x3), the volumetric20

water content θ(x1,x2,x3,t), h, H , q (all functions of x1, x2, x3, and t), and K (θ). For
saturated flow, K (θ) simplifies to K (x1,x2,x3). By letting n vary in space but not in time
we exclude from the analysis porous media with varying pore space (i.e., swelling and
shrinking soils), and implicitly limit the discussion to time scales much smaller than
those of interest for most geological and soil morphological processes.25
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Large-scale averages of porosity and volumetric water content are easily found and
their physical meaning is immediately clear:

nV =
1
V

∫
V

ndV (8)

θV =
1
V

∫
V

θdV (9)

where V [L3] denotes an arbitrary volume occupied by a porous medium, and the sub-5

script V denotes the volume-averaged value of the subscripted variable. Note that
Eqs. (8) and (9) are themselves upscaled values of volume averages of indicator func-
tions that take on the value of 1 whenever they are located in a pore or in the water
phase, respectively (see also Nordbotten et al., 2007). The main difference is obser-
vational: measuring n and θ is feasible in realistic porous media, while the indicator10

functions can only be determined in small, simplified systems. Averages of n and θ
over an arbitrary area or line along the principle directions within the porous medium
can be found by a corresponding reduction of the dimensions over which the integrals
in Eqs. (8) and (9) are performed.

As shown above, the hydraulic head represents the total energy of the water at a15

given location. Its spatial average should therefore reflect the total energy of the water
present in the porous medium volume for which the average is determined. Therefore,
the local values should be weighted by the local water amount. With H being the
energy per unit weight (Hillel, 1998, p. 153), weighting by the local weight (θρg) would
be consistent. But since ρg is assumed constant, weighting by θ is acceptable:20

HV =

∫
V
θHdV∫
V
θdV

(10)
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with the subscript V denoting a volume average as above. The weighting by θ en-
sures that Eq. (10) satisfies the additivity condition advocated by Gray (2002) in that it
conserves the total energy irrespective of the size of V .

Because of the identical averaging manipulations required by the superposition prop-
erty of the components h and x3 of H and, we also have:5

hV =

∫
V
θhdV∫
V
θdV

(11)

and

x3,V =

∫
V
θx3dV∫
V
θdV

(12)

which identifies the horizontal plane around the center of gravity of the water in V . Note
that the numerators of Eqs. (10–12) have dimensions L4 and are measures of the total,10

matric, and gravitational energy, respectively, stored in a body of subsurface water at
a given time. If desired, the relative nature of H , h, and x3 can be removed, and the
resulting absolute values can be multiplied by ρg to obtain the respective energies in
Joules.

As with n and θ, averages of the various potentials over an arbitrary area or line15

along the principle directions within the porous medium can be found by modifying the
dimensions over which the integrals in Eqs. (10–12) are performed. In many cases, a
flow has a well-defined macroscopic direction, for instance because the flow domain
is enclosed by impermeable barriers on all but two opposite sides. Integrations over
cross-sections perpendicular to the macroscopic flow direction can then provide aver-20

age potentials that are local with respect to the coordinate in the flow direction. This is
particularly useful for calculating upscaled head gradients.
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Any of the tensorial components of K can be volume-averaged, but the resulting
average does not bear a relationship to any flux at the scale of V . For K this direct
approach seems to be of limited value. Averaging the components of q is more fruitful.
Here, volume averages are less useful (as Nordbotten et al., 2007, also noted) than
averages over some area (e.g., the boundary of V , or a cross-section through V ). For5

simplicity, we limit the discussion to averages over areas in two principle directions. In
that case, the flux component qj [LT−1] (j∈ {1,2,3}) in the remaining principle direction

is of interest, and its average qj,A [LT−1] over area A [L2] in the directions of xi and xk
(i∈ {1,2,3}, k∈ {1,2,3}, i 6=j 6=k) is:

qj,A =
1
A

∫
A

qjdA = −1
A

∫
A

Kj
∂H
∂xj

dA (13)10

where the off-diagonal elements of K were assumed to be equal to zero. With averaged
flux densities thus derived, the question arises whether a hydraulic conductivity can be
found that relates the flux densities to some average gradient in H , effectively enforcing
a scale-invariant formulation of Darcy’s Law:

qj,A = −Kj,A

∫
A
f (x1, x2, x3, t)

∂H
∂xj

dA∫
A
f (x1, x2, x3, t)dA

(14)15

where Kj,A [LT−1] is the areally averaged hydraulic conductivity in the direction of xj ,
and f (x1,x2,x3, t) is an as yet undefined weighting function. An intuitively appealing
weighting function is θ (x1,x2,x3,t), in analogy with Eqs. (10–12). However, Darcy’s
Law (Eq. 7) does not have a term with θ. It describes flux densities, for which K

(related to water movement) is a more relevant quantity than θ, which is related to the20

amount of resident water.
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If we tentatively set f to 1 everywhere (uniform weighting), Eqs. (13) and (14) com-
bine to:

1
A

∫
A

Kj
∂H
∂xj

dA=
Kj,A
A

∫
A

∂H
∂xj

dA (15)

The definition of Kj,A follows immediately:

Kj,A =

∫
A
Kj

∂H
∂xj

dA∫
A

∂H
∂xj

dA
(16)5

Equation (13) arrives at an areally averaged flux density by arithmetically averaging
the local flux densities over A. According to Eq. (16), the corresponding hydraulic
conductivity of A is found by weighting the local values of Kj by the local hydraulic
head gradient ∂H /∂xj . The derivation involves an arithmetic areal average of ∂H /∂xj
in Eq. (15).10

In the above we saw that the total energy in a volume of subsurface water (or any
cross-section thereof) can be found by a θ-weighted average of the H , but that the areal
average of the flux density involves arithmetic averaging of the gradient of H . The local
energy gradient is closely related to the local flux density, as described by Darcy’s Law.
The connection between H and q at the non-point scale is not similarly defined. The15

first conclusion is that upscaling Darcy’s Law through consistent averaging of H and
K while keeping the differential equation itself identical to its point-scale form (Eq. 5)
is impossible. Furthermore, for both saturated and unsaturated flow K becomes a
function of H , creating the non-linearity that at the Darcy scale only manifests itself in
the unsaturated flow equation (Richards’ equation; Jury et al., 1985, p. 105–109; Hillel,20

1998, p. 212–214). A third conclusion is that the total energy of a body of water is of
little use in describing its tendency to generate subsurface flow.

From a practical point of view, the limited use of HV (or the areal average HA) for
large-scale flow calculations is not problematic. In many aquifers, H is fairly uniform
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with depth and can be easily recorded by monitoring wells. In aquitards and (deep) va-
dose zones, the flow is predominantly vertical in most cases. For aquitards, data from
the enveloping aquifers may provide information about the H-profile in the aquitard,
while deep vadose zones often have unit-gradient H-profiles with a uniform θ in indi-
vidual uniform strata. In contrast, calculating the accumulated energy requires infor-5

mation about the distribution of n and θ, and about the boundaries of the subsurface
water body of interest, all of which is difficult to obtain.

3 Illustrative cases

3.1 Upscaling the water content-matric head relationship

For the upscaled version of the soil water characteristic h(θ), the relation hV (θV ) is10

an obvious candidate, but the experimental conditions of h(θ) need to be taken into
account. At the Darcy scale, an undisturbed sample is typically exposed to a fixed H
long enough to establish hydrostatic equilibrium (e.g., Dane and Hopmans, 2002a, b,
c, d; Romano et al., 2002). From the elevation of the sample with respect to the chosen
x3,ref the value of h at the center of the sample is derived. The total water content of15

the sample is determined (usually by weighing) to calculate a point (h, θ) on the h(θ)-
curve. The height of the sample (usually ∼5 cm) is assumed to be too small to let the
value of θ be affected by the vertical gradient of h that counters the gradient in the
gravitational potential.

Even at this small scale, assuming the vertical variation in h to be negligible may not20

be permitted. Liu and Dane (1995) developed a criterion to test the validity of the as-
sumption for the general two-phase case, involving the densities of the wetting and the
non-wetting fluid and the geometry of the experimental set-up. In an elegant analysis,
Liu and Dane (1995) demonstrated that the vertical extent of the sample smoothed the
h(θ)-curve. An example calculation with a point-scale Brooks-Corey relation (Brooks25

and Corey, 1964), which features a sharp air-entry value that creates a discontinuity
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in the curve’s derivative, resulted in a curve more similar to van Genuchten’s (1980)
continuously differentiable shape. They calculated the smooth average curve by nu-
merically treating the sample as a stack of thin slices of soil with identical properties,
but with different values of h corresponding to their respective elevations. By sum-
ming the water contents of the slices for their respective values of h, the sample water5

content could be found.
For larger and possibly irregularly shaped averaging volumes V , the vertical extent of

V needs to be accounted for in conjunction with porous medium heterogeneity within
V . The procedure proposed by Liu and Dane (1995) can be adapted by assuming
hydrostatic equilibrium within V , characterized by uniform H or by hV . Applying the10

hydrostatic equilibrium condition H=h+x3 to Eq. (11) gives:

hV = H −

∫
V
θx3dV∫
V
θdV

= H −
+∞∫
−∞

x3

∫
A(x3)

θdA(x3)dx3

+∞∫
−∞

∫
A(x3)

θdA(x3)dx3


−1

(17)

where A(x3) is the horizontal area [L2] of V as function of x3. Note that either H or hV is
sufficient to fully characterize the distribution of h over V if the boundary of V is known.
The corresponding average water content is (see Eq. 8):15

θV =
1
V

+∞∫
−∞

∫
A(x3)

θdA(x3)dx3 (18)

An upscaled hV (θV ) relationship according to Eqs. (17) and (18) incorporates spatial
heterogeneity and allows h to vary with elevation under hydrostatic equilibrium condi-
tions. The relationship for macroscopic V (e.g., ranging from a soil layer within a field
plot to an entire field) will be of little use to calculate actual flow, but by comparing20

the actual hV and θV to the equilibrium curve, the deviation from equilibrium can be
asserted, and the tendency of V to absorb or release water from or to its surroundings
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(e.g., the groundwater, or a stream) can be established with a more or less quantitative
measure.

3.2 Macroscopically horizontal flow in a container filled with a heterogeneous porous
medium

This is a generalization of the hypothetical case discussed by Gray and Miller (2004),5

where a horizontal, closed rectangular container of length L [L], height B [L], and cross-
sectional area Ω [L2] was filled with a porous medium. Two water-filled reservoirs in
contact with the porous medium over the full cross-section at opposite ends at x1=0
and x1=L established fixed hydraulic head boundary conditions. A uniform layer of ver-
tical extent b [L] and porosity n2 was sandwiched between uniform layers with porosity10

n1. The stripe with porosity n2 tilted from the container bottom at x1=0 to the top at
x1=L to make the distance c2 [L] between the vertical midpoint of the layer and the
container bottom:

c2(x1) =
b
2
+
x1

L
(B − b) (19)

Gray and Miller (2004) derived an area-averaged pressure (equivalent to an averaged15

h) over a vertical cross-section using the θ-weighted averaging underlying Eq. (11)
above. If the integration in Eq. (11) were carried out over Ω instead of a volume (as
explained below Eq. 12) and the head were converted to a pressure, the resulting
equation would be identical to Gray and Miller’s. According to the superposition princi-
ple (Sect. 2.1) that requires identical averaging manipulations for all components of H ,20

the gravitational head x3 should have been averaged in the same way to arrive at the
correct gradient in the averaged HΩ (with the subscript indicating the cross-sectional
average). For n2>n1, the depth interval b centered on c2 would overcontribute to the
areally averaged θ-weighted h. The absence of vertical flow implies that H is vertically
uniform. With x3 linearly increasing with elevation, h must necessarily decrease with25

elevation at the same rate according to Eq. (6b). The overcontribution of h around c2
would be cancelled out by an equally large overcontribution of x3 with opposite sign.
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Initially, Gray and Miller (2004) did not carry out the averaging of the gravitational
head arguing that gravitation plays no part in horizontal flow. However, even in horizon-
tal flow, the gravitational head contributes to H . Consequently, the calculated ∂HΩ/∂x1
was erroneous, resulting in an obviously incorrect non-zero water flux while the water
levels in the reservoirs at both ends of the column were the same.5

In the next section of their paper, Gray and Miller (2004) developed an averaging
equation for the gravitational potential that is the areal averaging equivalent of Eq. (12)
above. The consistency between the averaging manipulations of h and x3 was thereby
restored, and the correct gradient of HΩ was obtained.

The corrected equations by Gray and Miller (2004) are only applicable to the spe-10

cific configuration of their hypothetical set-up, and their methodology rapidly becomes
intractable for more complicated set-ups. In contrast, the superposition principle out-
lined above naturally leads to the generally applicable set of Eqs. (10–12), that reduces
to Gray and Miller’s (2004) equations for their special case. Thus, consistent applica-
tion of the superposition principle resolves the paradox discussed by Gray and Miller15

(2004), and the validity of Darcy’s Law for the scale for which Darcy himself formulated
it remains unchallenged.

4 Conclusions

The relationship between the hydraulic, pressure/matric, and gravitational heads is sup-
ported by the thermodynamic interpretation of fluid pressure and the gravitational po-20

tential. The superposition property of the heads constituting the hydraulic head trans-
lates into a consistency requirement for the upscaling manipulations of all heads. With
the added constraint that the amount of energy must be conserved during volume inte-
grations, the superposition property produces a set of consistent upscaling equations.
Application of the equations to two cases demonstrates the usefulness of the equation25

set. In one case, an apparent paradox reported in the literature that threatened the va-
lidity of Darcy’s Law was elucidated by demonstrating that it emerged from a violation

1154

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/1137/2008/hessd-5-1137-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/1137/2008/hessd-5-1137-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 1137–1157, 2008

Thermodymanics and
upscaling of

subsurface water
potential

G. H. de Rooij

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

of the superposition principle.
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